Les Hexacyanoferrates Zéolithiques: Structure Cristalline de K₂Zn₃[Fe(CN)₆]₂.xH₂O

PAR PIERRE GRAVEREAU, EMMANUEL GARNIER ET ANTOINE HARDY

Laboratoire de Cristallochimie Minérale, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers CEDEX, France

(Reçu le 8 février 1979, accepté le 10 juillet 1979)

Abstract

The ferrocyanide $K_2Zn_3[Fe(CN)_6]_2$. xH_2O crystallizes with small deviations from rhombic symmetry, which can be explained by delocalization and partial ordering of K ions and zeolitic water molecules. The idealized disordered structure of $K_2Zn_3[Fe(CN)_6]_2.5H_2O$ was determined from single-crystal diffractometer data in the space group R3c, with the lattice parameters a =12.960 (4) Å, $\alpha = 57.83$ (1)°, Z = 2. The structure was solved by the heavy-atom method and refined by a simplex method. The final R value for the 132 observed reflexions was 0.064. FeC₆ octahedra and ZnN₄ tetrahedra are held together by the CN⁻ ions to constitute a three-dimensional frame with large cavities. Although K ions and water molecules are not well located this new structure allows an understanding of the zeolitic character and the ion-exchange behavior of this ferrocyanide.

Introduction

Dans le cadre d'une étude des propriétés d'adsorption des hexacyanoferrates simples et doubles nous avons été amenés à nous intéresser au ferrocyanure de zinc et de potassium $K_2Zn_3[Fe(CN)_6]_2.xH_2O$. Ce composé était connu pour ses propriétés d'échangeur d'ions (Kawamura, Kurotaki & Izawa, 1969; Vlasselaer, D'Olieslager & D'Hont, 1976) avec en particulier la possibilité d'un échange rapide et total des ions potassium. Le tracé des isothermes d'adsorption de la vapeur d'eau nous a permis de préciser son caractère zéolithique (Renaud, Gravereau, Garnier & Cartraud, 1979). Un des buts recherchés est la détermination des interactions entre l'eau et le squelette zéolithique, aussi est-il nécessaire de connaître la structure cristalline de ce ferrocyanure.

Jusqu'à ces dernières années la cristallochimie des hexacyanométallates était relativement mal connue. En effet un mélange de sels métalliques et d'hexacyanométallates d'alcalins conduit en général à des composés très insolubles, ce qui rend délicate la préparation de monocristaux. Parmi les études récentes sur mono-

0567-7408/79/122843-06\$01.00

cristaux la plupart concernent des composés de type cubique ou pseudo-cubique. Dans ce cas elles peuvent être réparties en deux catégories: d'une part celles qui ont permis de confirmer et de préciser le modèle cubique classique proposé par Keggin & Miles (1936) – citons à titre d'exemple le cas de $Cs_2Mg[Fe(CN)_6]$ (Swanson, Hamburg & Ryan, 1974); d'autre part la mise en évidence d'un nouveau type cubique dérivé du précédent (Ludi, Güdel & Rüegg, 1970; Beall, Milligan, Korp & Bernal, 1977). C'est en fait à ce nouveau type structural que doit être rattaché le 'bleu de Prusse' $Fe_4[Fe(CN)_6]_3.xH_2O$ (Buser, Schwarzenbach, Petter & Ludi, 1977).

A côté de ces types cubiques on peut signaler le type monoclinique de $Mn_2[Ru(CN)_6].8H_2O$ (Rüegg, Ludi & Rieder, 1971) et le type hexagonal de La[Fe-(CN)₆].5H₂O (Bailey, Williams & Milligan, 1973). L'étude sur poudre de $K_2Zn_3[Fe(CN)_6]_2.xH_2O$ (Renaud, Gravereau, Garnier & Cartraud, 1979) ne permet pas de rattacher ce composé à un des modèles rencontrés jusqu'à présent. Il s'agirait donc d'un type structural nouveau dans cette famille.

Données expérimentales

Préparation et analyse

Les monocristaux de $K_2Zn_3[Fe(CN)_6]_2.xH_2O$ ont été préparés par diffusion lente de solutions de $K_4[Fe-(CN)_6]$ et ZnCl₂ dans un gel de silice (Swanson, Hamburg & Ryan, 1974). La solution de Na₂SiO₃.9H₂O (10 g par 100 ml d'eau), dans laquelle on a ajouté KCl (0,05 *M*), est acidifiée avec HNO₃ (3 *M*) à un pH \simeq 6. Puis elle est mise à gélifier dans un tube en U à 313 K. Au bout de 48 heures les solutions de $K_4[Fe(CN)_6]$ et ZnCl₂ (0,05 *M*) sont versées à chaque extrémité du tube. En trois semaines apparaissent des anneaux de Liesegang (Henisch, 1970), puis une bande se développe où on observe la croissance de petits cristaux très rapprochés.

Très peu de monocristaux exploitables par les techniques radiocristallographiques ont pu être extraits du gel. Ce sont de petits parallélépipèdes plats, à base © 1979 International Union of Crystallography losange, opaques, de couleur gris-blanc difficile à apprécier à cause de la couche de gel résiduelle.

2844

La trop petite quantité de produit récupérée rend impossible l'utilisation des méthodes analytiques classiques. Nous avons donc effectué une analyse à l'aide de la microsonde CAMEBAX implantée au centre CNRS-BRGM d'Orléans (France), directement sur le cristal ayant servi au relevé des intensités diffractées. Les éléments dosés sont Na⁺, Si⁴⁺, Fe²⁺, K⁺, Zn²⁺, Cl⁰. La technique utilisée ne permet pas de caractériser les éléments C, N et O, et les concentrations massiques obtenues doivent être considérées en valeurs relatives. Dans le Tableau 1, nous indiquons les valeurs moyennes obtenues à partir de sept points d'analyse, pour les nombres d'atomes des divers éléments rapportés au nombre d'atomes de fer, ainsi que les intervalles de dispersion observés autour de ces valeurs movennes.

Si le rapport Zn/Fe est très stable et proche de la valeur théorique, par contre cette analyse met en évidence l'existence de gradients de concentration en ce qui concerne le potassium. Cette observation est à rapprocher de la grande mobilité des ions K⁺ signalée lors de l'étude du caractère échangeur d'ions de K₂Zn₃- $[Fe(CN)_6]_2.xH_2O$. La présence de sodium, silicium et chlore peut en première hypothèse être attribuée à des inclusions de gel dans le monocristal. L'éventualité d'un échange partiel (en particulier de K⁺ par Na⁺) et la détermination du nombre de molécules d'eau seront envisagées dans le stade de l'affinement de la structure par étude des fonctions différences et par l'introduction de taux d'occupation variables de sites.

Etude préliminaire des monocristaux isolés

Plusieurs des monocristaux isolés ont été étudiés à l'aide d'un diffractomètre automatique Enraf-Nonius CAD-4. Dans tous les cas nous avons mis en évidence une maille pseudo-hexagonale caractéristique avec une certaine dispersion des valeurs des paramètres de la maille autour des valeurs idéales. De même la comparaison de relevés d'intensités diffractées montre, pour certaines réflexions, une dispersion relativement importante des valeurs observées. La maille réelle est une maille triclinique aléatoire. Plusieurs hypothèses peuvent expliquer cet abaissement de la symétrie: gradients de concentration des ions K⁺; échange ionique possible; nombre de molécules d'eau zéolithique variable; ordre partiel entre K⁺ et H₂O.... Nous avons choisi de déterminer la structure idéalisée de K₂Zn₃[Fe-(CN)₆]₂. xH₂O avec la symétrie observée la plus grande (maille hexagonale) et à l'aide du monocristal fournissant les valeurs d'intensités diffractées les plus homogènes.

Relevé des intensités diffractées

Le monocristal retenu a une épaisseur de 25 μ m et les diagonales du losange de base valent 60 et 80 μ m. La maille hexagonale (*H*) utilisée pour le relevé est précisée dans le Tableau 2.

Les caractéristiques de l'enregistrement au diffractomètre automatique sont les suivantes: rayonnement Kadu molybdène isolé à l'aide d'un monochromateur de graphite; angle de 'take-off' optimisé à partir de cinq réflexions: $6,5^\circ$; 2θ variable jusqu'à 30° ; balayage ω ; angle de balayage: $1^\circ + 0,45^\circ$ tg θ ; ouverture: 3 mm; durée maximum du balayage final: 80 s.

Pour tout l'espace réciproque 5860 réflexions ont été enregistrées. Un contrôle de la stabilité des intensités diffractées a été fait à l'aide de trois réflexions sélectionnées et mesurées tous les 100 enregistrements. L'écart relatif maximum observé est de 4%. Après avoir effectué les corrections de Lorentz-polarisation et les moyennes relatives aux réflexions équivalentes de Friedel, 605 réflexions telles que $I > 2\sigma(I)$ peuvent être retenues dans le demi-espace réciproque. Aucune correction d'absorption n'a été effectuée. En effet la valeur du coefficient d'absorption linéaire ($\mu = 3,8$ mm⁻¹) jointe aux petites dimensions du monocristal utilisé rendent négligeables les variations du coefficient

Tableau 2. <i>Maille</i>	hexagonale	H du relevé, et	maille
rhomboédrique F	obverse	correspondante	pour
K ₂ Z	$2n_3[Fe(CN)_6]$	$_{2}.5H_{2}O$	

Maille H	Maille R
$a_H = 12,535 \pm 0,005$ Å	$a_R = 12,960 \pm 0,004 \text{ Å}$
$c_{H} = 32,26 \pm 0,01 \text{ Å}$	$\alpha_{R} = 57,83 \pm 0,01^{\circ}$
$V_{H}^{''} = 4388 \pm 5 \text{ Å}^{3}$	$V_R = 1463 \pm 4 \text{ Å}^3$
Z = 6	Z = 2
$d_x = 1,79 \text{ Mg m}^{-3}$	$d_x = 1,79 \text{ Mg m}^{-3}$

Tableau 1. Nombres d'atomes des divers éléments analysés rapportés au nombre d'atomes de fer

Eléments dos	és	Zn	К	Na	Si	Cl
Résultats expérimentaux de	(valeur moyenne)	1,49	0,70	0,17	0,08	0,02
	de dispersion	(1,44–1,53)	(0,30–1,25)	(0,11–0,21)	(0,06–0,11)	(0,00–0,03)
Valeurs théoriques K ₂ Zn ₃ [Fe(CN) ₆	relatives à $_{3}$, $xH_{2}O$	1,5	1	0	0	0

de transmission. Des balayages azimuthaux effectués sur 10 réflexions à θ variable montrent un écart relatif maximum de 6% sur les intensités brutes. De plus les calculs de valeurs moyennes constituent un biais de correction des variations de l'absorption.

Sur les 605 réflexions retenues trois seulement ne respectent pas la règle d'existence -h + k + l = 3n, mais ce sont trois réflexions faibles telles que $2\sigma(I) < I < 3\sigma(I)$. La symétrie est donc celle du réseau rhomboédrique (R) dont la maille obverse est précisée dans le Tableau 2.

Dans ce réseau rhomboédrique nous observons l'équivalence des six intensités des réflexions hkl, klh, lhk, hlk, khl et lkh avec toutefois, dans certains cas, deux valeurs qui se dispersent quelque peu autour de la valeur moyenne des quatre autres. Compte tenu des remarques précédentes sur l'abaissement de symétrie aléatoire observé, nous avons entrepris la recherche d'une structure idéalisée dans le groupe de Laue $\bar{3}m$ à l'aide des valeurs moyennes déduites des quatre valeurs les plus cohérentes. C'est ainsi qu'ont été obtenues les intensités observées de 132 réflexions indépendantes.

Recherche et affinement de la structure

Les indices de Miller des 132 réflexions retenues relatifs à la maille rhomboédrique vérifient la règle d'existence: hhl, l = 2n. Cette règle est compatible avec les groupes spatiaux R3c et R3c. La recherche de la structure a été faite dans le groupe centrosymétrique R3c.

Les facteurs de diffusion utilisés pour les centres diffusants Zn^{2+} , Fe^{2+} , K^+ , C et N sont issus des valeurs calculées par Cromer & Waber (1964). Pour O^{2–} nous nous sommes servis des résultats publiés par Tokonami (1965). Ces facteurs ont été corrigés de l'effet de dispersion anomale, les termes de correction étant ceux indiqués dans *International Tables for X-ray Crystallography* (1962).

La déconvolution de la fonction de Patterson nous a permis d'émettre une hypothèse sur les positions des atomes de zinc et de fer. Les groupements CN ont alors été placés géométriquement en respectant l'environnement octaédrique FeC_6 du fer. Le potassium et les molécules d'eau ont été placés à l'aide de fonctions différences successives. Trois molécules d'eau différentes notées O(1), O(2) et O(3) ont pu ainsi être caractérisées.

Dans cette structure idéalisée les atomes K, O(1), O(2) et O(3) sont supposés occuper incomplètement, de façon statistique, des sites en positions cristallographiques générales du groupe R3c. Compte tenu des propriétés zéolithiques et d'échangeur d'ions du composé étudié, les taux d'occupation de ces sites ont été introduits comme variables. Par contre nous nous sommes limités à un affinement des valeurs movennes des coefficients d'agitation thermique isotrope pour les divers types d'atomes. Cette détermination structurale se ramène alors à un problème à 132 observations et 37 inconnues. L'affinement de la structure a été effectué à l'aide du programme SPSRM 386 (n° 78 dans World List of Crystallographic Computer Programs, 1973) qui utilise l'algorithme optimal de Tournarie (1969). La valeur finale obtenue pour le coefficient de désaccord est R = 0,064 avec $R = \sum ||F_c| - F_o| / \sum F_o$. Un calcul effectué avec ce schéma final de symétrie $R\bar{3}c$, mais en utilisant les 605 observations de la maille triclinique réelle du relevé, conduit à une valeur R = 0,120. Les résultats de l'affinement sont donnés dans le Tableau 3 pour la maille R et pour la maille H. Les modules de facteurs de structure observés et calculés relatifs aux plans réticulaires de la maille R sont rassemblés dans le Tableau 4.

Description de la structure et discussion

La caractéristique essentielle de cette structure est un squelette tridimensionnel constitué d'octaèdres FeC₆ et

Tableau 3. Coordonnées atomiques réduites, facteurs d'agitation thermique isotrope, taux d'occupation des sites,
et leurs écarts types

	Positions de Wyckoff Coordonnées réduites dans R dans			Coordor	nnées réduit	Taux d'occupation	Facteurs d'agitation thermique		
	R	x _R	y _R	Z _R	x _H	y _H	z _H	sites	(Å ²)
Zn	6(<i>e</i>)	0,539 (1)	-0,039 (1)	0,25	0,289	0,0	0,25	1	2,1 (7)
Fe	4(c)	0,1458 (7)	0,1458 (7)	0,1458 (7)	0,0	0,0	0,1458	1	1,6 (9)
C(1)	12(f)	0,294 (9)	0,055 (9)	0,194 (8)	0,113	-0,013	0,181	1	1 (2)
C(2)	12(f)	0,252 (9)	0,089 (9)	0,000 (9)	0,138	0,114	0,114	1	1 (2)
N(1)	12(f)	0,386 (8)	-0,006 (8)	0,229 (7)	0,183	-0,026	0,203	1	3 (2)
N(2)	12(f)	0,310 (8)	0,063 (7)	-0,093 (8)	0,216	0,186	0,093	1	3 (2)
K	12(f)	0,79 (2)	0,07 (2)	0,21 (1)	0,43	0,14	0,36	0,4 (1)	16 (4)
O(1)	12(f)	0,60 (2)	0,28 (2)	-0,04 (2)	0,32	0,32	0,28	0,3 (1)	5 (4)
O(2)	12(f)	0,85 (2)	0,10 (2)	0,04 (2)	0,52	0,29	0.33	0,3 (1)	5 (4)
O(3)	12(f)	0.53 (4)	0.28(5)	-0.20(5)	0.32	0.40	0.20	0.2(1)	5 (4)

 Tableau 4. Modules des facteurs de structure observés et calculés

h k l	F.	10 F,	h K 1	F.	10 F,	h k 1	F.	10 F,	441	F.	10 F
1 1 0	961	1196	4 2 1	1354	1369	5 - 3 2	1454	1459	654	3360	3328
110	1385	1569	4 2 - 1	2446	2518	540	1063	732	664	547	531
210	4318	4326	4 2 - 2	1709	1837	541	4215	4310		4915	4663
211	1930	1908	4 - 2 1	671	733	5 4 . 1	179	694	710	1312	1794
2-10	2925	2931	4 - 2 1	3312	3505	5 4 2	624	800	7.2.1	917	817
2 - 1 - 1	5845	5455	4 - 2 - 2	4185	4182	5 4 - 2	807	807	730	4578	4335
220	4820	4854	4 3 0	3430	3032	5 4 3	1489	1323	731	1901	1994
2 2 2	1887	1878	431	1299	1292	5 5 2	2767	2683	232	477	685
2 2 - 2	3477	3619	431	2021	2042	6 1 0	2550	2054	740	778	677
2 - 2 0	2574	2428	432	4256	4223	6 1 1	1617	849	741	1343	1145
2 2 - 1	1490	1110	4 3 - 2	2751	2708	6 -	2591	2751	742	1619	1609
3 1 0	2932	2817	4 3 3	1198	1325	6 - 1 - 1	1974	1932	743	961	1222
3 1-1	385	553	431	2599	2614	620	441	702	751	2780	2739
3-10	1500	1608	4 - 3 - 3	3824	3798	6 2 1	1752	1829	752	3784	3595
320	2468	2373	440	3780	3700	622	4131	3999	7 5 3	2306	2250
321	5301	4980	442	760	798	6-20	3254	3214	754	1141	1136
3 2 - 1	593	850	4 4 - 2	550	699	6 - 2 1	1406	1560	761	3215	1778
3 2 - 2	1705	1741	444	3479	3351	630	1255	1424	762	1345	1619
3 - 2 0	921	952	4-40	1766	1912	631	762	1076	764	2322	2306
3 2 1	1363	1091	4 - 4	1367	1060	6 3 - 1	3324	3360	765	427	640
3 - 2 - 1	1872	1847	4 - 4 - 2	842	1124	632	989	1204	112	2580	2383
3 3 0	509	404	5 1 0	1659	1524	6 3 - 2	1328	1333	774	3318	3190
332	2402	2217	5 1 - 1	1078	1389	633	2469	2577	776	2 187	2334
3 3 - 2	3455	3372	5-10	3443	3359	6 4 0	1900	2136	832	2 198	2205
3-30	2329	2395	520	2957	2919	641	919	742	811	2641	2635
3-3-1	398	651	521	1892	1923	64-1	542	678	842	2240	2105
3-3-2	438	622	5 - 2 1	1171	831	642	946	1185	843	1773	1909
400	2291	2257	5 - 2 - 1	1214	1325	6 4 4	2881	2827	853	7468	2199
4 1 0	873	677	531	2776	2838	6 5 0	3234	3117	855	1781	3463
4 1 1	3372	3474	5 3 - 1	687	519	651	682	952	863	474	650
4 1 - 1	2940	3115	532	3164	3068	6 5 - 1	2135	1998	865	1279	1294
4-10	2289	2303	5 3 - 2	1717	1777	6 5 2	743	941	874	372	478
4 2 0	3480	3437	5-3-1	1942	2013	6 5 3	2451	2409	876	2511	2604
			-						2.0		

de tétraèdres ZnN_4 reliés entre eux par les groupements CN^- . L'édifice ainsi constitué dégage de larges cavités dans lesquelles viennent s'insérer les ions K⁺ et les molécules d'eau zéolithiques. Cette description est à rapprocher de celle des zéolithes classiques tridimensionnelles, les ions K⁺ jouant ici le rôle des cations de compensation.

Le squelette tridimensionnel $n\{Zn_3[Fe(CN)_6]_2^{2-}\}$

La Fig. 1 représente une vue suivant c des liaisons entre octaèdres FeC₆ et tétraèdres ZnN₄ dans le quart inférieur de la maille *H*. Les principales distances interatomiques et angles de liaisons qui caractérisent le squelette tridimensionnel sont consignés dans le Tableau 5. On peut y observer que, malgré des écarts statistiques relativement élevés obtenus pour C et N, les distorsions dans les groupements sont faibles et les distances ont des valeurs qui sont celles habituellement rencontrées dans ce type de composé.

Les éléments cristallochimiques de base $\{Zn_3[Fe-(CN)_6]_2\}^{2-}$, dont un représentant a été schématisé sur la Fig. 2, sont situés sur les axes ternaires. Chacun de ces éléments est relié à six autres: trois translatés de $+c_H/6$ par rapport à lui, et trois translatés de $-c_H/6$.

Fig. 2. Le groupement $\{Zn_3[Fe(CN)_6]_2\}^{2-}$.

maille hexagonale H. Les cotes réduites indiquées sont relatives

aux centres Fe et Zn.

 Tableau 5. Distances interatomiques (Å) et angles de liaison (°) principaux

Code de symétrie dans H: (i) -y, x - y, z; (ii) $-x + \frac{2}{3}$, $-y + \frac{1}{3}$, $-z + \frac{1}{3}$; (iii) x - y, -y, $\frac{1}{2} - z$; (iv) $y - x + \frac{1}{3}$, $y - \frac{1}{3}$, $\frac{1}{2} + z - \frac{1}{3}$; (v) $-y + \frac{2}{3}$, $x - y + \frac{1}{3}$, $z + \frac{1}{3}$; (vi) $y - x + \frac{2}{3}$, $-x + \frac{1}{3}$, $z + \frac{1}{3}$.

Octaedre FeC ₆	1.0.(1)	E_{α} $C(2)$	10(1)
re-C(1)	1,9(1)	Fe-C(2)	1,9 (1)
$C(1)$ -Fe- $C(1^i)$	88 (3)	$C(2)-Fe-C(2^{i})$	93 (3)
C(1)-Fe-C(2)	87 (4)	$C(2)-Fe-C(1^{i})$	92 (4)
$C(1)$ -Fe- $C(2^{i})$	174 (4)	Fe-C(1)-N(1)	177 (8)
		Fe-C(2)-N(2)	175 (8)
Tétraèdre ZnN₄			
Zn-N(1)	1,9	$Zn-N(2^{ii})$	2,0 (1)
$N(1)-Zn-N(1^{iii})$	106 (5)	$N(2^{ii})$ -Zn- $N(2^{iv})$	112 (5)
$N(1)-Zn-N(2^{ii})$	110 (4)	Zn-N(1)-C(1)	158 (9)
$N(1)-Zn-N(2^{iv})$	109 (4)	$Zn - N(2^{ii}) - C(2^{ii})$	155 (9)
Autres distances			
C(1) - N(1)	1,2 (1)	$K - N(1^{iii})$	3.1 (3)
C(2) - N(2)	1,2 (1)	$K - N(2^{v})$	3,4 (3)
		$K-N(2^{vi})$	3,6 (3)

2846

Un tel arrangement explique l'existence de larges cavités dont les centres sont tous les centres de symétrie portés par les axes 3. La Fig. 3(*a*) montre comment on peut générer une telle cavité en appliquant la symétrie $\bar{3}$ au motif représenté. La Fig. 3(*b*) montre le volume libre idéalisé de la cavité centrée en $(\frac{2}{3}, \frac{1}{3}, \frac{1}{3})$, dont on peut voir la partie inférieure sur la Fig. 1. On peut considérer qu'il s'agit d'un volume sphéroïdique aplati suivant \mathbf{c}_H et qui est mis en relation par l'intermédiaire de six 'fenêtres' (Fig. 3*b*) avec six autres cavités: trois dont les centres sont dans un plan $+\mathbf{c}_H/6$, et trois dans un plan à $-\mathbf{c}_H/6$. La maille *H* contient donc six cavités (deux pour la maille *R*).

Pour l'étude des propriétés zéolithiques de ce composé il est important de définir les dimensions des cavités ainsi que celles des 'fenêtres'. Pour cela nous avons considéré que ce sont les ions CN^- qui définissent les espaces libres et que, compte tenu des distances interatomiques habituellement rencontrées, un tel ion CN^- peut être assimilé à un petit cylindre de rayon moyen $r_{CN} \simeq 1,4$ Å. Les dimensions libres sont donc voisines des distances des milieux des groupements CN diminuées de $2r_{CN}$. Le Tableau 6 indique les principales distances ainsi obtenues pour ces espaces libres. diffusants K⁺, O(1), O(2) et O(3) sont les plus imprécises. Néanmoins on peut considérer que les valeurs centrales des taux d'occupation sont compatibles respectivement avec $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ et $\frac{1}{6}$, ce qui correspondrait à 2K⁺, 2O(1), 2O(2) et 2O(3) par cavité et à la formulation K₂Zn₃[Fe(CN)₆]₂.5H₂O. Un calcul effectué avec ces valeurs arrondies modifie peu la valeur du coefficient de désaccord ($R \simeq 0,065$). La Fig. 4(*a*) représente les positions statistiques occupées dans la cavité centrée en ($\frac{2}{3}, \frac{1}{3}, \frac{1}{3}$), et la Fig. 4(*b*) montre une hypothèse ordonnée compatible avec 2K⁺, 2O(1), 2O(2) et 1O(3) par cavité.

Pour les molécules d'eau zéolithiques, quelle que soit l'hypothèse retenue, l'imprécision sur leurs positions ne permet pas d'envisager valablement l'éventualité de liaisons hydrogène. Leur seule contribution à l'édifice cristallin semble être leur participation à l'environnement des ions K⁺. Ces ions K⁺ occupent des sites très larges, ce qui peut justifier leur agitation thermique anormalement élevée. En effet, outre les molécules d'eau (Fig. 4b), leurs trois premiers voisins CN se trouvent à des distances comprises entre 3,1 et 3,6 Å (Tableau 4).

Conclusion

Les ions K⁺ et les molécules d'eau zéolithiques

Les valeurs obtenues pour les positions et les taux d'occupation statistique des sites relatifs aux centres

Fig. 3. Cavités zéolithiques de la trame tridimensionnelle. (a) Obtention d'une cavité par application de la symétrie $\overline{3}$ au motif représenté. (b) Volume libre idéalisé de la cavité centrée en $(\frac{3}{2}, \frac{1}{3}, \frac{1}{3})$

Tableau 6. Dimensions des espaces libres qui caractérisent le squelette zéolithique $n\{Zn_3[Fe(CN)_6]_2\}^{2-}$

		Distances CN–CN d (Å)	Espacements libres $d - 2r_{CN}$ (Å)
	('hauteur') ($(\simeq \text{ parallèle à } \mathbf{c}_H)$	7,9 (2)	5,1
Cavité	(\simeq parallèle à \mathbf{a}_H , \mathbf{b}_H)	11,1 (2)	8,3
	('diamètre' maximum (\simeq parallèle à $\mathbf{a}_H, \mathbf{b}_H$)	15,5 (2)	12,7
'Fenêtre'	dimension minimum dimension maximum	6,7 (2) 8,0 (2)	3,9 5,2

L'existence possible de gradients de concentration des ions K^+ dans les cavités, un degré d'hydratation

Fig. 4. Répartition des ions K⁺ et des molécules d'eau dans la cavité centrée en $(\frac{2}{3}, \frac{1}{3}, \frac{1}{3})$. (a) Répartition statistique de K⁺, O(1), O(2), O(3), dans la cavité. (b) Hypothèse d'ordre dans la cavité avec 2K⁺, 2O(1), 2O(2), 1O(3) (les cercles en pointillés correspondent à des sites de taux d'occupation égaux à $\frac{1}{2}$).

variable, l'établissement d'un ordre partiel entre le potassium et les molécules d'eau, permettent d'expliquer l'abaissement de symétrie observé pour les monocristaux obtenus ainsi que les fluctuations d'intensités diffractées, pour un même plan réticulaire, d'un monocristal à un autre. On comprend aussi pourquoi ce sont les positions des atomes placés dans les cavités qui sont les plus imprécises dans notre détermination de la structure idéalisée de $K_2Zn_3[Fe(CN)_6]_2.5H_2O$.

Malgré cela nous pensons que cette première approche structurale garde son intérêt. En effet, la caractérisation du squelette tridimensionnel $n\{Zn_3[Fe-(CN)_6]_2^{2-}\}$, nouveau dans la série des hexacyanométallates, permet de comprendre les propriétés zéolithiques et d'échangeur d'ions de ce composé. De plus les éléments de discussion qui sont apparus au cours de cette étude fournissent une bonne explication d'une certaine disparité observée dans les données bibliographiques de ce ferrocyanure.

Ce travail est actuellement poursuivi au Laboratoire et nous espérons pouvoir répondre aux questions restées en suspens, en particulier par une étude plus fine des techniques de cristallisation.

Les calculs ont été effectués aux centres de calcul de l'Université de Poitiers (CICUP) et du CNRS (CIRCE).

Nous remercions M R. Giraud et M G. Remond (BRGM, Orléans, France) pour les analyses effectuées à la microsonde.

Références

- BAILEY, W. E., WILLIAMS, R. J. & MILLIGAN, W. O. (1973). Acta Cryst. B29, 1365–1368.
- BEALL, G. W., MILLIGAN, W. O., KORP, J. & BERNAL, I. (1977). Inorg. Chem. 16(11), 2715–2718.
- BUSER, H. J., SCHWARZENBACH, D., PETTER, W. & LUDI, A. (1977). *Inorg. Chem.* 16(11), 2704–2710.
- CROMER, D. T. & WABER, J. T. (1964). Report LA-3056. Los Alamos Scientific Laboratory.
- HENISCH, H. K. (1970). Crystal Growth in Gels. Pennsylvania State Univ. Press.
- International Tables for X-ray Crystallography (1962). Tome III, pp. 215–216. Birmingham: Kynoch Press.
- KAWAMURA, S., KUROTAKI, K. & IZAWA, M. (1969). Bull. Chem. Soc. Jpn, 42, 3003-3004.
- KEGGIN, J. F. & MILES, F. D. (1936). Nature (London), 137, 577–578.
- Ludi, A., Güdel, H. U. & Rüegg, M. (1970). Inorg. Chem. 9(10), 2224–2227.
- RENAUD, A., GRAVEREAU, P., GARNIER, E. & CARTRAUD, P. (1979). *Thermochim. Acta*, **31**, 243–250.
- Rüegg, M., Ludi, A. & Rieder, K. (1971). Inorg. Chem. 10(8), 1773–1777.
- SWANSON, B. I., HAMBURG, S. I. & RYAN, R. R. (1974). Inorg. Chem. 13(7), 1685–1687.
- Токонамі, М. (1965). Acta Cryst. 19, 486.
- TOURNARIE, M. (1969). J. Phys. Radium, 30, 737–750.
- VLASSELAER, S., D'OLIESLAGER, W. & D'HONT, M. (1976). J. Inorg. Nucl. Chem. 38, 327-330.
- World List of Crystallographic Computer Programs (1973). J. Appl. Cryst. 6, 309–346.

Acta Cryst. (1979). B35, 2848-2851

Monotellurure de Gallium, GaTe

PAR M. JULIEN-POUZOL, S. JAULMES, M. GUITTARD ET F. ALAPINI

Laboratoire de Chimie Minérale Structurale (Laboratoire associé au CNRS n° 200), Faculté des Sciences Pharmaceutiques et Biologiques de Paris–Luxembourg, 4 avenue de l'Observatoire, 75270 Paris CEDEX 06, France

(Reçu le 30 mars 1979, accepté le 18 juillet 1979)

Abstract

Introduction

GaTe crystallizes in the monoclinic system, space group B2/m, with a = 17.404 (2), b = 10.456 (2), c = 4.077 (2) Å, $\gamma = 104.44$ (1)°, Z = 12, $d_{calc} = 5.45$, $d_{exp} = 5.40$ Mg m⁻³. The structure has been solved by direct methods and refined by a least-squares procedure to a final *R* value of 0.0305 for 1182 reflexions collected by an automatic four-circle diffractometer (Mo Ka). Tetrahedra around Ga atoms are formed by three Ga—Te bonds and one Ga—Ga covalent bond.

0567-7408/79/122848-04**\$**01.00

Le réseau de GaTe a été longtemps discuté. Hahn & Klingler (1949), dans une courte note, proposent une maille monoclinique: a = 12,7, b = 4,0, c = 14,99 Å, $\beta = 103,9^{\circ}$ et Z = 12. Schubert, Dörre & Gunzel (1954) attribuent à ce même composé une autre maille monoclinique: a = 23,76, b = 4,068, c = 10,46 Å et $\beta = 45,4^{\circ}$. Newman, Brice & Wright (1961) trouvent a = 17,37, b = 4,074, c = 10,44 Å et $\beta = 104,12^{\circ}$. Cette dernière maille a été reprise par Pearson (1967). Semi-© 1979 International Union of Crystallography